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Lecture 6

Approximation methods

1. Time-Independent Perturbation Theory
2. Variation method

The exact solution is S.E is possible only for the 

Hydrogen Like atom, when many electron 

exist , the situation become mole complicated de 

to e-e interaction(repulsion) so there is a need for

Approximation 
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Time Independent Perturbation Theory

Introduction

One often finds in QM that the Hamiltonian for a particular problem

can be written as:

( 0 ) ( 1 )H H H 

H(0) is an exactly solvable Hamiltonian; i.e. ( 0 ) ( 0 ) ( 0 ) ( 0 )H E 

H(1) is a smaller term which keeps the Schrödinger Equation from

being solvable exactly.

One example is the Anharmonic Oscillator:

2 2
2 3 4

2

1

2 2

d
H kx x x
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 


     

H(0)

Exactly Solvable

H(1)

Correction Term
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( 0 ) ( 1 )H H H  ( 0 ) ( 0 ) ( 0 ) ( 0 )H E where

( 0 ) ( 1 ) ( 2 ) ( )nE E E E E    

In this case, one may use a method called “Perturbation Theory” to

perform one or more of a series of increasingly higher order corrections

to both the Energies and Wavefunctions.

( 0 ) ( 1 ) ( 2 ) ( )n        

We will use the notation: ( 0 )E E E   ( 0 )    and

Some textbooks** outline the method for higher order corrections.

However, we will restrict the treatment here to first order perturbation

corrections

e.g. Quantum Chemistry (7th. Ed.), by I. N. Levine, Chap. 9
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First Order Perturbation Theory

( 0 ) ( 1 )H H H  ( 0 ) ( 0 ) ( 0 ) ( 0 )H E where

( 0 )E E E  
( 0 )    Assume: and

H E 

       ( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 0 )H H E E          

( 0 ) ( 0 ) (1) ( 0 ) ( 0 ) (1)

( 0 ) ( 0 ) ( 0 ) ( 0 )

H H H H

E E E E

   

   

    

       

One can eliminate the two terms involving the product of two small corrections.

( 0 ) ( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )H H H H E E E E                   

One can eliminate two additional terms because: ( 0 ) ( 0 ) ( 0 ) ( 0 )H E 
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( 1 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )H H E E        

( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )* * * *H d H d E d E d                   

Multiply all terms by (0)* and integrate:

H(0) is Hermitian.  Therefore:

 ( 0 ) ( 0 ) ( 0 ) ( 0 )* *H d H d          ( 0 ) ( 0 ) *E d   
( 0 ) ( 0 ) *E d   

( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )* * * *H d E d E d E d                   

Plug in to get:

Therefore: ( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 0 )* *H d E d        E 

( 0 ) ( 1 ) ( 0 )*E H d     is the first order perturbation theory

correction to the energy.
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Applications of First Order Perturbation Theory

PIB with slanted floor

Consider a particle in a box with the potential:

( ) 0 ,V x x x a   

0( ) 0
V

V x x x a
a

  

 

V0For this problem:

2 2
( 0 )

2
0

2

d
H

m dx
  

2 2
(0 )

28
n

n h
E

ma


( 0 ) 2
sinn

n x

a a




 
  

 
The perturbing potential is: (1) 0V

H x
a



x

V
(x

)

0 a
0



Slide 7

We will calculate the first order correction to the nth energy level.

In this particular case, the correction to all energy levels is the same.

( 0 ) ( 1 ) ( 0 )*E H d    
0

0

2 2
sin sin

a
Vn x n x

x dx
a a a a a

     
      

    


20

0

2
sin

a
V n x

x dx
a a a

 
   

 


 sin 2 sin 2 0
n

a a
a




 
  

 

 cos 2 cos 2 1
n

a a
a




 
  

 

2
2

2

sin(2 ) cos(2 )
sin ( )

4 4 8

x x x x
x x dx

 


 
  

Integral Info

 20

2

0

2
sin

a
V n

x x dx
a a


   

2

0

2 2 2

2 sin (2 ) cos(2 ) cos(0 )
0 0

4 4 8 8

V a a a a

a

 

  

    
         

   

2

0

2 2 2

2 1 1

4 8 8

V a

a  

    
       

   

0

2

V
E  Independent of n



Slide 8

Anharmonic Oscillator

For this problem:
2 2

( 0 ) 2

2

1

2 2

d
H kx

m dx
  

( 0 )

0

1

2
E 

2

1/ 4

( 0 ) / 2

0

xe 




 
  
 

The perturbing potential is:
( 1 ) 3 4H x x  

2 3 41
( )

2
V x kx x x   

Consider an anharmonic oscillator with the potential energy of the form:

We’ll calculate the first order perturbation theory correction to the ground

state energy.

kk 
 


 

 
2 2

1/ 4 1/ 4

/ 2 3 4 / 2x xe x x e dx  
 

 



 



   
      

   


( 0 ) ( 1 ) ( 0 )

0 0*E H d    

 
2

1/ 2

3 4 xx x e dx
 








 
  
 


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2 2

1/ 2 1/ 2

3 4x xx e dx x e dx  
 

 

 

 

 

   
    

   
 

24

20

3

8

 

 


 

xx e dx

23

4k






Note: There is no First order Perturbation Theory correction due

to the cubic term in the Hamiltonian.

However, there IS a correction due to the cubic term

when Second order Perturbation Theory is applied.

 
2

1/ 2

3 4 xE x x e dx
 








 
   

 


2

1/ 2

4

0

0 2 xx e dx






 
   

 


1/ 2 1/ 2

2

3
2

8

 


  

     
      

     
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E




 
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k






 
  
 
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Brief Introduction to Second Order Perturbation Theory

As noted above, one also can obtain additional corrections to the energy

using higher orders of Perturbation Theory;  i.e.

The second order correction to the energy of the nth level is given by:

( 0 ) ( 1 ) ( 2 )

n n n nE E E E   

En
(0) is the energy of the nth level for the unperturbed Hamiltonian

En
(1) is the first order correction to the energy, which we have called  E

En
(2) is the second order correction to the energy, etc.

2
( 0 ) (1) ( 0 )

( 2 )

( 0 ) ( 0 )
1

k n

n

k n k

H
E for k n

E E

 



 




( 0 ) ( 1 ) ( 0 ) ( 0 ) ( 1 ) ( 0 )*k n k nH H d     where
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If the correction is to the ground state (for which we’ll assume n=1), then:

2
(0 ) (1) ( 0 )

1( 2 )

1 ( 0 ) ( 0 )
2 1

k

k k

H
E

E E

 








2 2 2
( 0 ) (1) ( 0 ) ( 0 ) (1) ( 0 ) ( 0 ) (1) ( 0 )

2 1 3 1 4 1( 2 )

1 ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )

1 2 1 3 1 4

H H H
E

E E E E E E

     
   

  

Note that the second order Perturbation Theory correction is actually

an infinite sum of terms.

However, the successive terms contribute less and less to the overall

correction as the energy, Ek
(0), increases.


